
Skip to content

Skip to content
JupyterLab: The evolution of Jupyter

Notebook

JupyterLab is a next-generation web-based user interface for Project Jupyter. It’s a

full featured IDE that has everything we ever wanted to be in Jupyter notebooks

which enables you to work with documents and activities such as Jupyter

notebooks, text editors, terminals, and custom components in a flexible,

integrated, and extensible manner.

The main features of JupyterLab:

Drag and Drop:

The ability to re order cells without cut and paste is powerful. It also feels

more natural to do drag and drop given that code is organized in cells in

notebooks

Multiple notebooks and kernels:

Running multiple notebooks at the same time already exist with the jupyter

notebooks. However, these notebooks had to be oppened in multiple browser

windows. In JupyterLab, you can have multiple notebooks open at the same

time and in the same browser window. Also, you can arrange your notebooks

as you like which gives more flexibility. Another nice feature is it’s possible to

have each notebook running on it’s own kernel, this is powerful when running

multiple notebooks at the same time doing different things.

Real time markdown editor

•

•

•

Skip to content

With this new feature, I can edit and see in real time the update of my

markdown files in JupyterLab. This speeds-up the edit process and streamlines

work.

Multiple windows

With multiple windows open at the same time, I can have multiple notebooks

that I am working on and then use a terminal inside JupyterLab

Full file explorer

The file browser and File menu enable you to work with files and directories

on your system. This includes opening, creating, deleting, renaming,

downloading, copying, and sharing files and directories.

Manage kernels and terminals

Command search

Fast CSV files viewer

...

•

•

•

•

•

•

Skip to content
Running JupyterLab Remotely with Slurm

Just like Jupyter Notebook, JupyterLab can be launched locally and access local

file systems, or they can be launched on a remote machine.

By default, Labs is not secure, and potentially expose a users local files to

unwanted users. We recommend reading the section Running Jupyter Notebook

with Slurm where you can find several advices to use JupyterLab.

Remember:

The reason here

What is the solution?

Why?

What is the meaning of this?

You can use JupiterLab in two different way:

Create a Conda o pip environment

Using as module

Do Not Run Jupyter on the Login Nodes

Internet is Not Available on Compute Nodes

You can't directly access the compute nodes

This deployment is not the multi-user server you are looking for

•

•

how_to_jupyter_notebook/#running_jupyter_notebooks_remotely_with_slurm
how_to_jupyter_notebook/#running_jupyter_notebooks_remotely_with_slurm
how_to_jupyter_notebook/#running_jupyter_notebooks_remotely_with_slurm
how_to_jupyter_notebook/#running_jupyter_notebooks_remotely_with_slurm
how_to_jupyter_notebook/#running_jupyter_notebooks_remotely_with_slurm
how_to_jupyter_notebook/#running_jupyter_notebooks_remotely_with_slurm

Skip to content

Create a conda environment to install JupyterLab

Here we have several recommendations that we recommend that you read. To

simplify:

Using JupiterLab as module

You only need type:

How to start JupyterLab

If you prefer use JupyterLab as module you only need change in the following

lines the line

with

Running JupyterLab on a Compute Node via salloc

Create a conda environment

conda activate jupyter-labenv

conda install jupyterlab matplotlib ipykernel ipywidgets ipympl --channel conda-forge -y

module spider jupyter

--

 JupyterLab: JupyterLab/3.1.6

 --

 Description:

 JupyterLab is the next-generation user interface for Project Jupyter offering all the

familiar building blocks of the classic Jupyter Notebook (notebook, terminal, text editor, file

browser, rich outputs, etc.) in a flexible and powerful user interface.

 JupyterLab will eventually replace the classic Jupyter Notebook.

 You will need to load all module(s) on any one of the lines below before the "JupyterLab/

3.1.6" module is available to load.

 GCCcore/11.2.0

...

conda activate jupyter-labenv

module load GCCcore/11.2.0 JupyterLab/3.1.6

../how_to_jupyter_notebook/#creating_a_conda_environment

Skip to content

Running Labs as usual uses secure HTTP connections. In this guide, we present a

guide to running it more securely. More info here

Note, the default is for JupyterLab to automatically open a browser – but we can’t

do that on a remote server, so we bypass that function with the --no-browser flag.)

Create a SSH Tunnel

Here we talk about the reasons why it is necessary to create the ssh tunnel and

how to make this.

Start a second terminal session, connect to any login node and

On your local machine (e.g., laptop) setup the tunnel as follows:

Change nodeXXXX-X.hpc.iter.es by node ip.

```bash

salloc --nodes=1 --partition batch --ntasks=1 --mem=20G --time=12:00:00  

# or salloc -N 1 -p batch 

# or srun -p batch --pty bash 

conda activate jupyter-labenv

jupyter lab --no-browser --port=8890 --ip=127.0.0.1

```

By default, JupyterLab are not secure, and potentially expose a users

local files to unwanted users.

Tip

ssh -N -L localhost:8889:localhost:8889 yourUser@nodeXXXX-Y.hpc.iter.es

ssh -N -L localhost:8890:localhost:8890 yourUser@loginX.hpc.iter.es

You can use the DNS of the node or the ip

./how_to_jupyter_notebook/#crear_un_tunnel_ssh
../how_to_jupyter_notebook/#creating_a_ssh_tunnel

Skip to content

We recommend secure your Jupiter Lab

Running JupyterLab on a Compute Node via sbatch

Run script with

Enter the address in your favorite browser

http://127.0.0.1:8890/lab?token=4c7eddd5770e27195808f4615d8e6f3de48b45c57169b69e

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=1

#SBATCH --mem=20G

#SBATCH --partition=centos7

#SBATCH --time=01:00:00

#SBATCH --job-name=jupyter-lab

#SBATCH --output=jupyter-lab-%j.out

#SBATCH --error=jupyter-lab-%j.err

##

Enable modules profile

source /etc/profile.d/profile.modules.sh

Enable conda on bash console

eval "$(conda shell.bash hook)"

load modules or conda environments here

module load Miniconda3/4.9.2

conda activate jupyter-labenv

get tunneling info

XDG_RUNTIME_DIR=""

node=$(hostname -s)

user=$(whoami)

cluster="teide-hpc"

port=8890

print tunneling instructions jupyter-log

echo -e "

Command to create ssh tunnel from login node to compute node:

ssh -N -L localhost:${port}:localhost:${port} ${user}@nodeXXXX-Y.hpc.iter.es

Command to create ssh tunnel from your local machine to any login node:

ssh -N -L localhost:${port}:localhost:${port} ${user}@login1(2).hpc.iter.es

Use a Browser on your local machine to go to:

localhost:${port} (prefix w/ https:// if using password)

"

Run Jupyter

jupyter lab --no-browser --port=${port} --ip=127.0.0.1

Skip to content

In order to access JupyterLab navigate to http://localhost:8890/

A few important notes

By default, you start a Jupyter server with token authentication enabled and this

token is logged to the terminal, so that you can copy/paste the URL into your

browser. This token can be used only once, and is used to set a cookie for your

browser once it connects. After your browser has made its first request with this

one-time-token, the token is discarded and a cookie is set in your browser.

Alternatives to token authentication you can set a password for your server. Jupyter

server password will prompt you for a password, and store the hashed password in

your jupyter_server_config.json which is usually located in ~/.jupyter typing:

You can access now with password instead of token autentication on http://

localhost:8890/lab

https://jupyter-server.readthedocs.io

sbatch jupyter-lab.sbatch

Set a strong password in JupyterLab

jupyter server password

Enter password:

Verify password:

[JupyterPasswordApp] Wrote hashed password to /home/vdominguez/.jupyter/

jupyter_server_config.json

More security advice here

http://localhost:8890/
http://localhost:8890/lab
http://localhost:8890/lab
https://jupyter-server.readthedocs.io/en/latest/operators/public-server.html

Skip to content

If your notebook files are not in the current directory, you can pass your working

directory path as argument when starting JupyterLab.

Keep in mind Lab sessions always reside in a workspace. The default workspace is

the main /lab URL:

bash http(s)://<server:port>/<lab-location>/lab

To do this, if you are using salloc mode you can log back onto the screen session

you started earlier where the jupyter notebook is running and use ctrl-C should

shutdown the jupyter notebook and exit to close the session with the node.

If you are using batch mode you can use the command scancel .

JupyterLab Extensions Manager

JupyterLab extension is simply a plug-and-play add-on that makes more of the

things you need possible.

Technically JupyterLab extension is a JavaScript package that can add all sorts of

interactive features to the JupyterLab interface

There are a ton of JupyterLab extensions that you may want to use. Among the

best known we could highlight:

Jupyterlab-slurm

A JupyterLab extension to interface with the Slurm workload manager.

How to change the JupyterLab start-up directory

jupyter lab --notebook-dir=/home/yourUser/data/notebooks/ --preferred-dir /home/yourUser/

data/myapp

Make sure you shutdown your JupyterLab when you are done

Skip to content

Neptune-notebooks

Neptune is a tool for experiment tracking, model registry, data versioning, and

live model monitoring.

Skip to content

JupyterLab TensorBoard

JupyterLab TensorBoard is a frontend extension for tensorboard on jupyterlab. It

helps to collaborate between jupyter notebook and tensorboard (a visualization

tool for tensorflow) by providing a graphical user interface for tensorboard start,

manage and stop in jupyter interface.

Jupyter ML-workspace

The ML workspace is an all-in-one web-based integrated development

environment dedicated for machine learning and data science.

JupyterLab Debugger

Debugger is a JupyterLab extension that works as a visual debugger for Jupyter

notebooks, consoles, and source files. It can help you identify and fix bugs.

Skip to content

JupyterLab Git

This one is a JupyterLab extension for Git free and open-source distributed version

control system. It allows you for version controlling. You simply use it by opening

the Git extension from the Git tab on the left panel.

Skip to content

Other notable extensions:

JupyterLab LaTeX

JupyterLab variableInspector

JupyterLab plotly

JupyterLab bokeh

Jupyter Dash

JupyterLab Table of Contents

JupyterLab SQL

•

•

•

•

•

•

•

	JupyterLab: The evolution of Jupyter Notebook
	Running JupyterLab Remotely with Slurm
	Create a conda environment to install JupyterLab
	Using JupiterLab as module
	How to start JupyterLab
	Running JupyterLab on a Compute Node via salloc
	Create a SSH Tunnel
	Running JupyterLab on a Compute Node via sbatch

	A few important notes
	JupyterLab Extensions Manager
	Jupyterlab-slurm
	Neptune-notebooks
	JupyterLab TensorBoard
	Jupyter ML-workspace
	JupyterLab Debugger
	JupyterLab Git

