
Skip to content

Skip to content
Using Jupyter Notebook

Running Jupyter Notebooks Remotely with Slurm

Notebooks can be launched locally and access local file systems, or they can be

launched on a remote machine, which provides access to a user's files on the

remote system. In the latter case, the notebooks are launched via a process that

creates a unique URL that is composed of the hostname plus an available port

(chosen by the jupyter application) plus a one-time token. The user obtains this

URL and enters it into a local web browser, where the notebook is available as

long as the process on the remote machine is up and running. By default, these

notebooks are not secure, and potentially expose a users local files to unwanted

users.

You have to keep these concepts in mind:

The login or head node of each cluster is a resource that is shared by many users.

Running Jupyter on one of these nodes may adversely affect other users. Please

use one of the approaches described on this page to carry out your work.

Jupyter sessions run on the compute nodes which do not have Internet access. This

means that you will not be able to download files, clone a repo from GitHub, install

packages, etc. You will need to perform these operations on the login nodes.

Any files that you download while on the login node will be available on the

compute nodes during your session.

For security reasons, the compute nodes are not directly accessible. However, they

can be accessed while you are running a job from any login nodes.

You just have to access a login node first and then SSH to the node where your

application is running.

Do Not Run Jupyter on the Login Nodes

Internet is Not Available on Compute Nodes

You can't directly access the compute nodes

Skip to content

This document describes how you can run a public server with a single user. This

should only be done by someone who wants remote access to their personal

account. Even so, doing this requires a thorough understanding of the set-ups

limitations and security implications. If you allow multiple users to access a

notebook server as it is described in this document, their commands may collide,

clobber and overwrite each other.

If you want a multi-user server, the official solution is JupyterHub. To use

JupyterHub, you need a Unix server (typically Linux) running somewhere that is

accessible to your users on a network. This may run over the public internet, but

doing so introduces additional security concerns.

Create a conda environment

First of all we have to create a conda environment. You can see this steps here.

Remember:

Use login nodes to create python/conda environment. They only have internet

access.

Install python or conda packages in /data

Install neccesary packages for jupyter

This is not the multi-user server you are looking for

•

•

$ module spider miniconda

$ module load Miniconda3/4.9.2

$ conda create --name jupyter-env [python=3.9.15] or

$ conda create --prefix /home/user/data/allenvironments/my_environtment [python=3.9.15]

Collecting package metadata (current_repodata.json): done

Solving environment: done

….

To activate this environment, use

$ conda activate jupyter-env

To deactivate an active environment, use

$ conda deactivate

•

conda activate jupyter-env

conda install jupyter ipykernel matplotlib ipywidgets ipympl --channel conda-forge -y

../how_to_conda/
how_to_conda.md/#create_an_environment_in_data
how_to_conda.md/#create_an_environment_in_data

Skip to content

Running Jupyter Notebokk on a Compute Node via salloc

Larger tasks can be run on one of the compute nodes by requesting an interactive

session using salloc.

First things first: start up a screen session (or tmux if you prefer). If I am looking

to have some program running for longer than I am wanting to keep a terminal

window open – screen or tmux are great options as they keep your session from

timing out on remote machines.

You should now see that your terminal prompt has changed to something like the

following, indicating that you are logged onto the interactive node and working

within the conda-env environment:

Once a compute node has been allocated, starts Jupyter and then connects to it.

On the remote machine type:

The notebooks are launched via a process that creates a unique URL that is

composed of ip and port 8889 plus a one-time token. The user obtains this URL

and enters it into a local web browser, where the notebook is available as long as

the process on the remote machine is up and running.

[I 13:22:01.198 NotebookApp] Writing notebook server cookie secret to /home/

youruser/.local/share/jupyter/runtime/notebook_cookie_secret

[I 13:22:12.448 NotebookApp] Serving notebooks from local directory: /home/

youruser

[I 13:22:12.448 NotebookApp] Jupyter Notebook 6.5.2 is running at:

[I 13:22:12.448 NotebookApp] http://127.0.0.1:8889/?

token=36229e08e0944c8d1b4df0174e23a7ee11e278ccbed5f967

[I 13:22:12.448 NotebookApp] or http://127.0.0.1:8889/?

token=36229e08e0944c8d1b4df0174e23a7ee11e278ccbed5f967

screen -S jupyter

salloc --nodes=1 --partition batch --ntasks=1 --mem=20G --time=12:00:00

or salloc -N 1 -p batch

or srun -p batch --pty bash

conda activate jupyter-env

(jupyter-env) yourUser@nodeXXXX-X

jupyter-notebook --no-browser --port=8889 --ip=127.0.0.1

Skip to content

[I 13:22:12.448 NotebookApp] Use Control-C to stop this server and shut down

all kernels (twice to skip confirmation). [C 13:22:12.568 NotebookApp]

To access the notebook, open this file in a browser:

file:///home/youruser/.local/share/jupyter/runtime/nbserver-4762-open.html

Or copy and paste one of these URLs:

http://127.0.0.1:8889/?

token=36229e08e0944c8d1b4df0174e23a7ee11e278ccbed5f967

or http://127.0.0.1:8889/?

token=36229e08e0944c8d1b4df0174e23a7ee11e278ccbed5f967

!!! tip Important!

Note that we selected the Linux port 8889 to connect to the notebook. If you don't

specify the port, it will default to port 8888 but sometimes this port can be already

in use either on the remote machine or the local one (i.e., your laptop). If the port

you selected is unavailable, you will get an error message, in which case you

should just pick another one. It is best to keep it greater than 1024. Consider

starting with 8888 and increment by 1 if it fails, e.g., try 8888, 8889, 8890 and so

on. If you are running on a different port then substitute your port number for

8889.

Running notebooks in the usual way use the insecure HTTP connections. In this

tutorial, we present a guide for running notebooks more securely.

How to create a SSH Tunnel

For security reason we recommend to use ssh tunneling to securely connect to the

notebook server. You will create an ssh connection between your local host and

the notebook port on the remote, interactive node. When you connect your

Note, the default is for Jupyter Notebook to automatically open a browser – but *we can’t

do that on a compute node by security reasons , so we bypass that function with the _--no-

browser_* flag.

Tip

By default, Jupyter Notebooks are not secure, and potentially expose a

users local files to unwanted users.

Skip to content

browser to the notebook service, this will channel all communications via the SSH

connection, which is secure and encrypted.

Start a second terminal session on your local machine, connect to any login node

and setup SSH tunnel as follow:

In login node write:

You could see this message and write yes.

Start a thirds terminal session on your local machine (e.g., laptop) and setup the

tunnel as follows:

-N Do not execute a remote command. This is useful for just forwarding ports.

-L Specifies that the given port on the local (client) host is to be forwarded to

the given host and port on the remote side.

Change nodeXXXX-X.hpc.iter.es by node ip.

ssh yourUser@loginX.hpc.iter.es

ssh -N -L localhost:8889:localhost:8889 yourUser@nodeXXXX-Y.hpc.iter.es

The authenticity of host 'node1710-1.hpc.iter.es (10.0.17.37)' can't be established.

ECDSA key fingerprint is SHA256:LqRpSE90hft08tO47V2nx7jbIsUOX42SeKAgEVBPODo.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added 'node1710-1.hpc.iter.es' (ECDSA) to the list of known hosts.

ssh -N -L localhost:8889:localhost:8889 yourUser@loginX.hpc.iter.es

You can use the DNS of the node or the ip

Skip to content

Finally, copy and paste the address in your favorite browser and replace the “?

token=x” part of the URL with your token

We recommend reading the section A few importan notes below.

Running Jupiter Notebook on a Compute Node via sbatch

The second way of running Jupyter on the cluster is by submitting a job via sbatch

that launches Jupyter on the compute node.

In order to do this we need a submission script like the following called

jupyter.sh:

http://127.0.0.1:8889/?token=36229e08e0944c8d1b4df0174e23a7ee11e278ccbed5f967

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=1

#SBATCH --mem=20G

#SBATCH --partition=centos7

#SBATCH --time=01:00:00

#SBATCH --job-name=jupyter-notebook

#SBATCH --output=jupyter-notebook-%j.out

#SBATCH --error=jupyter-notebook-%j.err

##

Enable modules profile

source /etc/profile.d/profile.modules.sh

Skip to content

This job launches Jupyter on the allocated compute node and we can access it

through an ssh tunnel as we did in the previous section.

First, from the head node, we submit the job to the queue:

Once the job is running, a log file will be created that is called jupyter-

notebook-.log. The log file contains information on how to connect to Jupyter, and

the necessary token.

In order to connect to Jupyter that is running on the compute node, setup a tunnel

between compute node and login node as:

and between your local machine and login node as follows:

In order to access Jupyter Notebook, navigate to http://localhost:8889/

Enable conda on bash console

eval "$(conda shell.bash hook)"

load modules or conda environments here

module load Miniconda3/4.9.2

conda activate jupyter-env

get tunneling info

XDG_RUNTIME_DIR=""

node=$(hostname -s)

user=$(whoami)

cluster="teide-hpc"

port=8889

print tunneling instructions jupyter-log

echo -e "

Command to create ssh tunnel from login node to compute node:

ssh -N -L localhost:${port}:localhost:${port} ${user}@nodeXXXX-Y.hpc.iter.es

Command to create ssh tunnel from your local machine to any login node:

ssh -N -L localhost:${port}:localhost:${port} ${user}@login1(2).hpc.iter.es

Use a Browser on your local machine to go to:

localhost:${port} (prefix w/ https:// if using password)

"

Run Jupyter

jupyter-notebook --no-browser --port=${port} --ip=127.0.0.1

sbatch jupyter-notebook.sh

ssh -N -L localhost:8889:localhost:8889 yourUser@nodeXXXX-X.hpc.iter.es

ssh -N -L localhost:8889:localhost:8889 yourUser@loginX.hpc.iter.es

http://localhost:8889/

Skip to content

A few important notes

Before you connect to a remote server with jupyter notebook make sure that you

have configured jupyter with password information. You can do this by editing the

jupyter-notebook_config.json which is usually located in ~/.jupyter or by typing:

You can access now with password instead of token autentication on http://

localhost:8889/login

Read about Jupyter Notebook security here and here

Set a strong password in Jupyter Notebook

jupyter notebook password

Enter password:

Verify password:

[NotebookPasswordApp] Wrote hashed password to /home/yourUser/.jupyter/

jupyter_notebook_config.json

More security advice here

http://localhost:8889/login
http://localhost:8889/login
https://jupyter-notebook.readthedocs.io/en/stable/public_server.html#securing-a-notebook-server
https://jupyter-notebook.readthedocs.io/en/stable/security.%20html#security-in-the-jupyter-notebook-server

Skip to content

By default Jupyter use your home as default start-up directory but It is possible to

change it by two methods: * Using –notebook-dir argument:

* Change the default directory by generating a config file

Type the command below to create a config folder.

Open the ~/.jupyter/jupyter_notebook_config.py* file.

Search for the comment, The directory to use for notebooks and kernels

Uncomment and replace the following property in file with your prefer

directory.

Re-run Jupyter Notebook again.

To do this, if you are using salloc mode you can log back onto the screen session

you started earlier where the jupyter notebook is running and use ctrl-C should

shutdown the jupyter notebook and exit to close the session with the node. If you

are using batch mode you can use the command scancel .

Jupyter Notebook Basics

In the following link you can find a description of Jupyter Notebooks:

Notebook basics

The Notebook dashboard

How to change the Jupyter Notebook start-up directory

jupyter-notebook --no-browser --port=8089 --ip=127.0.0.1 --notebook-dir=/home/my-user/

data/my-dir

1.

jupyter notebook --generate-config

2.

3.

4.

The directory to use for notebooks and kernels.

Default: ''

c.NotebookApp.notebook_dir = '/home/my-user/data/my_notebooks'

5.

Make sure you shutdown your Jupyter Notebook when you are done

•

https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Notebook%20Basics.html#Notebook-Basics

Skip to content

Basic example

Skip to content

Run your example

Skip to content

Skip to content

	Using Jupyter Notebook
	Running Jupyter Notebooks Remotely with Slurm
	Create a conda environment
	Running Jupyter Notebokk on a Compute Node via salloc
	How to create a SSH Tunnel

	Running Jupiter Notebook on a Compute Node via sbatch

	A few important notes
	Jupyter Notebook Basics
	The Notebook dashboard
	Basic example
	Run your example

