
Skip to content

Skip to content
Parallelism

If you are working on complex and large-scale problems that require high

performance computing (HPC), you may wonder how to choose the best

architecture for your needs.

HPC systems can be classified into two main types: shared memory and

distributed memory_ systems.

Shared memory parallelism (threading)

In shared-memory parallelism (SM), applications achieve parallelism by executing

more than one thread at a time across cores within one node. Each of the threads

see and manipulate the same memory that the initial process allocated. Threads

are light-weight and fast, independently processing portions of work. With SM

parallelism, jobs are limited to the total amount of memory and cores on

one node.

To run a threaded application properly through Slurm, you will need to specify a

number of Slurm constraints. For example, to launch a Slurm job for your

threaded application that will use 16 threads do:

If you opt to not use srun to launch your application, you must add this to your

Slurm job script: export OMP_NUM_THREADS=16 This number must match --cpus-

per-task.

Distributed memory parallelism (MPI)

In distributed-memory parallelism (DM), an application achieves parallelism by

running multiple instances of itself across multiple nodes to solve the problem.

#!/bin/bash

#SBATCH -J my_job

Numero de Nodos y cores por nodo

#SBATCH -N 1

#SBATCH --cpu-per-task=16

#SBATCH --mem=57000

#SBATCH --constraint=sandy

#SBATCH --partition=batch

module load GCC/12.2.0

srun ./myapp

Skip to content

Each instance is allocated its own chunk of virtual memory and communicates to

other instances via a message passing interface such as MPI.

For example, to use 4 nodes and 16 processors per node,

DM + SM parallelism (hybrid)

In hybrid parallelism, applications achieve parallelism with the use of both

threads and MPI tasks. This type of parallelization combines the features of the

previous two models, allowing a program to run threading on multiple nodes

across the cluster.

Hybrid jobs can potentially run more efficiently (consuming less memory and

scaling further) by reducing the MPI communication overhead of a job. This can

be done by substituting light-weight threads for MPI ranks.

To set up jobs to use DM+SM, first make sure your app supports it.

#!/bin/bash

#SBATCH -J my_job

#SBATCH -N 4

#SBATCH --tasks=16

#SBATCH --mem=28000

#SBATCH --constraint=sandy

#SBATCH --partition=batch

module load intel/2021b intel-compilers/2021.4.0 impi/2021.4.0

srun ./myapp

#!/bin/bash

#SBATCH –cpus-per-task=12 #same as -c 12

#SBATCH –ntasks=4 #same as -n 4

#SBATCH –ntasks-per-node=2

module load gompi/2022b

srun ./myapp

Skip to content

For example, if you have a DM job that runs best with 64 cores, you can then

request that your job run on only 4 nodes with nodes=4. Of course, by doing this

your job will likely take longer to start due to the extra job constraint, but it could

be worth it for your analyses. The next best thing to do is to ask Slurm to

preferably use 4 nodes, but if not possible, use 5, or 6. You would specify this with

--nodes=4-6. Without specifying --nodes, your MPI job could run on any number of

nodes across the cluster.

OpenMP/Multithreading vs. MPI

While there are several ways to request a certain amount of CPU cores for your

program notice the following distinction:

Requests ntask (no of) CPU cores for MPI ranks (distinct processes)

These can be distributed over several compute nodes

Requests nodes and ntask-per-node (no of) CPU cores for MPI ranks

(distinct processes) in the same node

These distribute over no of compute nodes X task.

Request cpu-per-task (no of) CPU cores for multithreaded applications

(eg. OpenMP)

In contrast the option "--cpus-per-task" specify how many CPUs each task can use.

These will always be allocated inside one single compute node, never to several

nodes!

DM jobs can be a performance hit due to the MPI communication steps

when running the application over too many nodes.

•

#SBATCH --ntask= <ntask>

•

#SBATCH --nodes= <nodes>

#SBATCH --ntask-per-node= <ntas-per-node>

•

#SBATCH --cpus-per-task= <cpus-per-task>

Skip to content
Some advice about this.

In TeideHPC, by default HyperThreading is disabled, that is to say #SBATCH --

ntasks-per-core=1

Start with 2 nodes and study the results and increase the number of nodes or tasks

little by little.

Basic example: use srun or not

For a plain MPI application, use

--ntasks_,

usin Distributed Memory (across nodes)

requires MPI.

For a plain OpenMP/multithreaded application, use

--ntasks=1

--cpus-per-task=X,

using Shared Memory (inside a single node).

For a hybrid application, use

--ntasks=<no of nodes>

--cpus-per-task=<no of cores per node>

using both SM and DM,

requires MPI.

The SBATCH option --ntasks-per-core=# is only suitable for compute

nodes having HyperThreading enabled in hardware/BIOS

Do your own scalability tests.

#!/bin/bash

#SBATCH --ntasks=8

more options

echo hello

Skip to content

This should always output only a single line, because the script is only executed

on the submitting node not the worker.

srun causes the script to run your command on the worker nodes and as a result

you should get 8 lines of hello.

Basic examples: use ntask and 1 thread applications.

Using the default ntasks=1

The number of tasks by default was specified to one, and therefore the second

task cannot start until the first task has finished. This job will finish in around 22

seconds. To break this down:

sacct -j1425 --format=JobID,Start,End,Elapsed,NCPUS

Here task 0 started and finished (in 12 seconds) followed by task 1 (in 10

seconds). To make a total user time of 22 seconds.

Using ntasks=2

#!/bin/bash

#SBATCH --ntasks=8

more options

srun echo hello

•

#!/bin/bash

#SBATCH --ntasks=1

srun sleep 10 &

srun sleep 12 &

wait

 JobID Start End Elapsed NCPUS

------------ ------------------- ------------------- ---------- ----------

1425 2023-07-13T20:51:44 2023-07-13T20:52:06 00:00:22 1

1425.batch 2023-07-13T20:51:44 2023-07-13T20:52:06 00:00:22 1

1425.0 2023-07-13T20:51:44 2023-07-13T20:51:56 00:00:12 1

1425.1 2023-07-13T20:51:56 2023-07-13T20:52:06 00:00:10 1

•

#!/bin/bash

#SBATCH --ntasks=2

srun --ntasks=1 sleep 10 &

srun --ntasks=1 sleep 12 &

wait

Skip to content

Running the same sacct command as specified above:

sacct -j 515064 --format=JobID,Start,End,Elapsed,NCPUS

More examples.

Visit our repository at github https://github.com/hpciter/user_codes.git

JobID Start End Elapsed NCPUS

------------ ------------------- ------------------- ---------- ----------

515064 2023-07-13T21:34:08 2023-07-13T21:34:20 00:00:12 2

515064.batch 2023-07-13T21:34:08 2023-07-13T21:34:20 00:00:12 2

515064.0 2023-07-13T21:34:08 2023-07-13T21:34:20 00:00:12 1

515064.1 2023-07-13T21:34:08 2023-07-13T21:34:18 00:00:10 1

https://github.com/hpciter/user_codes.git

	Parallelism
	Shared memory parallelism (threading)
	Distributed memory parallelism (MPI)
	DM + SM parallelism (hybrid)
	OpenMP/Multithreading vs. MPI
	Some advice about this.
	Basic example: use srun or not
	Basic examples: use ntask and 1 thread applications.

	More examples.

