
Skip to content

Skip to content
Sequential executions

The minimum reserve unit to execute in TeideHPC is the node, so, regardless of

the work to be executed, when accounting for it, it will be considered that full

nodes have been used. That is, the hours of use of the infrastructure is given

by the number of hours that each node is executing the work in question,

whether or not all the available resources are used.

So that the user is not harmed by this fact, he will have to structure his executions

so that he can group them in the same number of cores as the nodes (16).

Sequential executions usually require many job executions at a few cores, so the

user must structure the input data for the executions in folders or file names

identified by a job number, so that it can be easily manipulated.

Once the input data is organized in this way, it can be executed, launching as

many tasks as fit in a node in a submit script.

Example of sequential execution of 1-core jobs

The following example script launches 16 1-core jobs simultaneously.

The srun command will launch individual jobs on different cores. The & symbol

at the end of the line means that the job runs in the background, so that there is

!/bin/bash

#SBATCH -J <job_name>

#SBATCH -p <partition>

#SBATCH -N 1

#SBATCH --constrains=<node arquitecture> # sandy, ilk (icelake)... arquitecture

#SBATCH -t <days-HH:MM:SS>

#SBATCH -o <file.out>

#SBATCH -D .

##

module purge

module load <modules>

for i in {1..16}; do

 srun --ntasks=1 --exclusive --output=slurm-%J.out serial-program --input /path/to/input.$i

&

done

wait until all background processes are ended

wait

Skip to content

no need to wait to launch the next job. The wait command at the end prevents the

job from finishing until all previous processes have finished.

Example of sequential execution of 4-core jobs

The following example script launches 4 jobs on 4 cores simultaneously for a total

of 16 cores used:

!/bin/bash

#SBATCH -J <job_name>

#SBATCH -p <partition>

#SBATCH -N 1

#SBATCH --constrains=<node arquitecture> # sandy, ilk (icelake)... arquitecture

#SBATCH -t <days-HH:MM:SS>

#SBATCH -o <file.out>

#SBATCH -D .

##

module purge

module load <modules>

srun --ntasks=4 --exclusive --output=slurm-%J.out serial-program --input /path/to/input_1 &

srun --ntasks=4 --exclusive --output=slurm-%J.out serial-program --input /path/to/input_2 &

srun --ntasks=4 --exclusive --output=slurm-%J.out serial-program --input /path/to/input_3 &

srun --ntasks=4 --exclusive --output=slurm-%J.out serial-program --input /path/to/input_4 &

wait until all background processes are ended

wait

	Sequential executions
	Example of sequential execution of 1-core jobs
	Example of sequential execution of 4-core jobs

