
Skip to content

Skip to content
Slurm memory limits

Slurm imposes a memory limit on each job. By default, it is deliberately relatively

small — 2 GB per node. If your job uses more than that, you’ll get an error that

your job Exceeded job memory limit.

To set a larger limit, add to your job submission:

where X is the maximum amount of memory your job will use per node, in MB.

The larger your working data set, the larger this needs to be, but the smaller the

number the easier it is for the scheduler to find a place to run your job.

To determine an appropriate value look at how to study job efficiency section.

How to study job efficiency

Many times we ask ourselves how I figure out how efficient my job is and for this

study you can use the seff command.

where JOBID is the one you’re interested in. For example:

#SBATCH --mem X

seff JOBID

$ seff 1553

Job ID: 1553

Cluster: teide

User/Group: viddata/viddata

State: COMPLETED (exit code 0)

Nodes: 4

Cores per node: 16

CPU Utilized: 2-11:55:56

CPU Efficiency: 89.73% of 2-18:47:28 core-walltime

Job Wall-clock time: 01:02:37

Memory Utilized: 26.08 GB (estimated maximum)

Memory Efficiency: 23.85% of 109.38 GB (27.34 GB/node)

seff JOBID

Skip to content

You should set the memory you request to something a little larger than what seff

reports.

Note that for parallel jobs spanning multiple nodes, this is the maximum

memory used on any one node; if you’re not setting an even distribution of tasks

per node (e.g. with --ntasks-per-node), the same job could have very different

values when run at different times.

Also note that the number recorded by slurm for memory usage will be inaccurate

if the job terminated due to being out of memory. To get an accurate

measurement you must have a job that completes successfully as then

slurm will record the true memory peak.

Max memory per type of node

How do I figure out how efficient my job is?

You can see your job efficiency by comparing MaxRSS, MaxVMSize, Elapsed,

CPUTime, NCPUS with sacct command.

Request memory little large than seff reports.

seff show the maximum memory used in parallel jobs.

Wait for job to finish succesfully

Node type Slurm memory max

request

Sandy bridge 16 Cores - 32 GB 30000 MB

Sandy bridge 16 Cores - 64 GB 62000 MB

Fat Nodes 32 Cores - 256 GB 254000 MB upon

request

Icelake Nodos GPU 64 Cores -

256 GB

254000 MB upon

request

Skip to content

In this job, you see that the user used 64 cores and his job ran for 13.5 hours.

However, your CPU time is 13.5 hours, which is close to 64*13 hours. If your code

scales effectively according to this formula CPUTime = NCPUS * Elapsed your

application scales perfectly. If it isn't, the result will diverge from the formula and

the best way to test this and determine how to scale your app is to do some

scaling testing.

There are two styles you can do: Strong scaling and Weak scaling

Strong scaling

Strong scaling is where you leave the problem size the same but increase the

number of cores. If your code scales well it should take less time proportional to

the number of cores you use.

Weak scaling

The amount of work per core remains the same but you increase the number of

cores, so the size of the job scales proportionally to the number of cores. Thus if

your code scales in this case the run time should remain the same.

Thus beyond that point there is not any benefit to increasing the number of cores

you throw at the problem. That’s the point you want to look for. This is most easily

seen by plotting log of the number of cores vs. log of the runtime.

sacct -j 999997 --

format=User,JobID,Jobname%25,partition,elapsed,MaxRss,MaxVMSize,nnodes,ncpus,nodelist%20

 User JobID JobName Partition Elapsed MaxRSS MaxVMSize

NNodes NCPUS NodeList

--------- ------------ ----------------- ---------- ---------- ---------- ---------- -------- ---------- --------------------

 eolicase 999996 WRF_2023080618 batch 13:32:47 4 64

node1511-[1-4]

 999996.batch batch 13:32:47 216700K 815628K 1 16

node1511-1

 999996.0 geogrid.exe 00:00:57 236240K 2762564K 4 8

node1511-[1-4]

 999996.1 metgrid.exe 00:01:54 15395M 591912K 4 4

node1511-[1-4]

 999996.2 real.exe 00:00:26 338148K 2928876K 4 16

node1511-[1-4]

 999996.3 wrf.exe 13:26:36 598864K 3768748K 4 64

node1511-[1-4]

Typically most codes have a point where the scaling breaks down due to

inefficiencies in the code.

	Slurm memory limits
	How to study job efficiency
	Max memory per type of node

	How do I figure out how efficient my job is?
	Strong scaling
	Weak scaling

