
Skip to content

Skip to content
GPUs at TeideHPC

GPU is an acronym for Graphics Processing Unit and represents precisely the

heart of a graphics card just like the CPU does in a PC. Apart from the heart, it is

also your brain, since it is in charge of carrying out all the complex calculations

that allow some programs to run much faster than on a CPU.

Among the main uses of GPUs are the following:

Video edition

3D graphics rendering

Automatic learning

Scientific applications

etc...

The TeideHPC cluster offers 2 different GPU models to use with your jobs. We

recommend taking a look at the cluster description to get an idea of what it looks

like.

GPUs models available

These are the GPUs currently available at TeideHPC:

(*) Compute Capability is a technical term created by NVIDIA as a compact way to

describe what hardware functions are available on some models of GPU and not

•

•

•

•

•

GPU

model

of

nodes

of

GPUs/

node

Slurm

type

specifier

CPU

cores/

node

CPU

memory/

node

Compute

Capability

(*)

GPU

mem

(GiB)

Nvidia

A100

16 4 a100 64 256GB 80 40

GB

Nvidia

A100

1 8 a100 64 512GB 80 40

GB

Nvidia

Tesla

T4

4 1 t4 32 256GB 75 16

GB

../../

Skip to content

on others. It is not a measure of performance and is relevant only if you are

compiling your own GPU programs. See the page on CUDA programming for

more.

GPU computing at TeideHPC

The TeideHPC cluster has a number of nodes that have NVIDIA general purpose

graphics processing units (GPGPU) attached to them. It is possible to use CUDA

tools to run computational work on them and in some use cases see very

significant speedups.

As we explained in the how to run jobs section we can use 3 differents ways for

sending a job to the job queue: using an interactive session, launching the

application in real time or by means of an execution script.

How to request GPU resources

To request GPU or GPU nodes you must first understand how your

cluster is configured, for this reason we recommend that you refer to the

home page where we have a cluster description that may help you.

Basically there are 2 architectures: icelake (GPU nodes) and sandy (CPU

nodes).

Based on these architectures, the resources within the cluster are requested.

The way to request a GPU node is to use the dedicated gpu partition. In order to

use this partition, access must be requested.

In addition to specifying the partition, the SLURM gres must be used.

Generic Resource GRES

In Slurm, GRES stands for Generic Resource. GRES is a feature that allows

you to specify and manage various types of generic resources such as GPUs

(Graphics Processing Units) within a computing cluster.

Slurm's GRES functionality enables efficient allocation, scheduling, and tracking

of these resources for jobs submitted to the cluster. It helps ensure that the

requested resources are available and properly utilized by the jobs that require

them.

To use GRES effectively, you need to understand how your cluster is

configured, how available GRES types and quantities are defined and

specify GRES requirements when submitting jobs.

•

•

•

https://docs.alliancecan.ca/wiki/CUDA#.22Compute_Capability.22
../../slurm/how_to_running_jobs/
../index.en.md/#cluster-description

Skip to content

To get type of GRES defined in the cluster you can use:

To find out list of GRES at TeideHPC look at the column GRES after execute this

command.

Alternatively, it can also be viewed by listing and filtering the nodes:

As you can see, each node in cluster may have a different definition. For example

this node has 4 GPUs NVidia A100.

GRES usage example.

For a GPU node (icelake) with one GPU (Nvidia A100).

$ scontrol show config | grep Gres

GresTypes = gpu

$ sinfo -o "%40N %10c %10m %35f %30G"

NODELIST CPUS MEMORY AVAIL_FEATURES

GRES

node18109-1 64 257214 ilk,gpu,a100 gpu:a100:8

node2204-[3-4] 20 31906 ivy (null)

node17109-1,node17110-1,node18110-1,node 64 257214 ilk,viz,t4

gpu:t4:1

node0303-2,node0304-[1-4],node1301-[1-4] 16 30000+ sandy

(null)

node17102-1 64 257214 ilk,gpu,a100,3g.20gb,2g.10gb,1g.5gb

gpu:3g.20gb:1(S:0),gpu:2g.10gb

node17101-1,node17103-1,node17104-1,node 64 257214

ilk,gpu,a100 gpu:a100:4(S:0-1)

$ scontrol show nodes | egrep "NodeName|gres"

....

NodeName=node1315-4 Arch=x86_64 CoresPerSocket=8

NodeName=node2204-3 Arch=x86_64 CoresPerSocket=10

...

NodeName=node17101-1 Arch=x86_64 CoresPerSocket=32

 CfgTRES=cpu=64,mem=257214M,billing=64,gres/gpu=4,gres/gpu:a100=4

NodeName=node17102-1 Arch=x86_64 CoresPerSocket=32

 CfgTRES=cpu=64,mem=257214M,billing=64,gres/gpu=7,gres/gpu:1g.5gb=2,gres/gpu:

2g.10gb=1,gres/gpu:3g.20gb=1,gres/gpu:a100=3

NodeName=node17103-1 Arch=x86_64 CoresPerSocket=32

 CfgTRES=cpu=64,mem=257214M,billing=64,gres/gpu=4,gres/gpu:a100=4

NodeName=node17104-1 Arch=x86_64 CoresPerSocket=32

 CfgTRES=cpu=64,mem=257214M,billing=64,gres/gpu=4,gres/gpu:a100=4

...

NodeName=node17104-1 Arch=x86_64 CoresPerSocket=32

 CfgTRES=cpu=64,mem=257214M,billing=64,gres/gpu=4,gres/gpu:a100=4

•

Skip to content

Remember that to use GPUs you have to use the gpu partition, for which you have

to have requested access.

To request a single GPU on slurm just add #SBATCH --gres=gpu to your submission

script and it will give you access to a GPU. To request multiple GPUs add

#SBATCH --gres=gpu:n where ‘n’ is the number of GPUs.

So if you want 1 CPU and 2 GPUs from our general use GPU nodes in the ‘gpu’

partition, you would specify:

If you prefer to use interactive session you can use:

While on GPU node, you can run nvidia-smi to get information about the assigned

GPU’s.

Job script example for GPU job

Full GPU Nvidia A100

salloc -n 1 --cpus-per-task 8 -p express --mem 8000 --gres=gpu:a100=1

Tip

#SBATCH -p gpu

#SBATCH -n 1

#SBATCH --gres=gpu:a100:2

salloc -p gpu --mem 8000 --gres=gpu:a100:1

•

#!/bin/bash

#SBATCH --partition=gpu

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=4

#SBATCH --gres=gpu:a100:1

#SBATCH --mem=8G

#SBATCH --time=1:00:00

module purge

module load CUDA/12.0.0

nvidia-smi

sleep 20

sbatch 01_gpu_basic_a100.sbatch

Skip to content

More examples

Visit our repository in github https://github.com/hpciter/user_codes

https://github.com/hpciter/user_codes

	GPUs at TeideHPC
	GPUs models available
	GPU computing at TeideHPC
	How to request GPU resources
	Generic Resource GRES
	GRES usage example.
	Job script example for GPU job
	More examples

