
Skip to content

Skip to content
Singularity

Singurlaity is a platform that allows containers to run in HPC environments.

Docker is the most popular tool for running applications in containers, but as it is

designed, putting it into production with the possibility of the users themselves

managing the containers is a major security risk. That is why alternatives such as

Singularity and others were born.

Singularity has support for using MPI and GPU to run containers and can be

integrated into a Slurm script without problems.

Use Singularity at TeideHPC

We currently have version v3.11 available at TeideHPC.

Using the modules tool we can load the software:

Info

$ module load Singularity/3.11.0

$ singularity -h

Linux container platform optimized for High Performance Computing (HPC) and

Enterprise Performance Computing (EPC)

Usage:

 singularity [global options...]

Description:

 Singularity containers provide an application virtualization layer enabling

 mobility of compute via both application and environment portability. With

 Singularity one is capable of building a root file system that runs on any

 other Linux system where Singularity is installed.

Options:

 -c, --config string specify a configuration file (for root or

 unprivileged installation only) (default

 "/share/easybuild/software/common/software/Singularity/3.11.0/etc/

singularity/singularity.conf")

 -d, --debug print debugging information (highest verbosity)

 -h, --help help for singularity

 --nocolor print without color output (default False)

 -q, --quiet suppress normal output

 -s, --silent only print errors

 -v, --verbose print additional information

 --version version for singularity

https://docs.sylabs.io/guides/3.5/user-guide/introduction.html#why-use-singularity

Skip to content

Docker containers

Singularity uses its own container format, .sif , having to transform Docker

containers so that they can be used, but this is done by the program itself without

the need for user intervention.

Download containers from DockerHUB

When downloading containers, always download them from the login nodes, which

are the ones with Internet access, and not from the computation nodes.

Available Commands:

 build Build a Singularity image

 cache Manage the local cache

 capability Manage Linux capabilities for users and groups

 completion Generate the autocompletion script for the specified shell

 config Manage various singularity configuration (root user only)

 delete Deletes requested image from the library

 exec Run a command within a container

 help Help about any command

 inspect Show metadata for an image

 instance Manage containers running as services

 key Manage OpenPGP keys

 oci Manage OCI containers

 overlay Manage an EXT3 writable overlay image

 plugin Manage Singularity plugins

 pull Pull an image from a URI

 push Upload image to the provided URI

 remote Manage singularity remote endpoints, keyservers and OCI/Docker registry

credentials

 run Run the user-defined default command within a container

 run-help Show the user-defined help for an image

 search Search a Container Library for images

 shell Run a shell within a container

 sif Manipulate Singularity Image Format (SIF) images

 sign Add digital signature(s) to an image

 test Run the user-defined tests within a container

 verify Verify digital signature(s) within an image

 version Show the version for Singularity

Examples:

 $ singularity help <command> [<subcommand>]

 $ singularity help build

 $ singularity help instance start

For additional help or support, please visit https://www.sylabs.io/docs/

Info

Skip to content

In this example we will download an image from DockerHub to be used in the

cluster:

It will download the container image file to the current directory:

If we want, as we do with docker, we can specify a specific version:

Once downloaded, we could try running the container:

We remind users that it is not possible to run software on login nodes and this

includes containers. For this, the salloc slurm command is available to request a

node interactively and work without problems.

singularity pull docker://hello-world

INFO: Converting OCI blobs to SIF format

INFO: Starting build...

Getting image source signatures

Copying blob 8a49fdb3b6a5 done

Copying config 689808b082 done

Writing manifest to image destination

Storing signatures

2023/06/01 15:06:41 info unpack layer:

sha256:8a49fdb3b6a5ff2bd8ec6a86c05b2922a0f7454579ecc07637e94dfd1d0639b6

INFO: Creating SIF file...

hello-world_latest.sif

singularity pull docker://hello-world:latest

Warning

singularity run hello-world_latest.sif

INFO: Converting SIF file to temporary sandbox...

WARNING: passwd file doesn't exist in container, not updating

WARNING: group file doesn't exist in container, not updating

Hello from Docker!

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.

 (amd64)

 3. The Docker daemon created a new container from that image which runs the

 executable that produces the output you are currently reading.

 4. The Docker daemon streamed that output to the Docker client, which sent it

 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:

Skip to content

If needed, we also have the build command to download docker containers. The

main utility of the build command is to be able to create your own containers from

existing containers or from a definition file.

And we would execute it in the same way:

If for whatever reason our application is not available in DockerHub and we have

to build the container from source, we can do it in our local computer, using

 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:

 https://hub.docker.com/

For more examples and ideas, visit:

 https://docs.docker.com/get-started/

INFO: Cleaning up image...

singularity build tutu.sif docker://hello-world

INFO: Starting build...

2023/06/01 14:58:33 info unpack layer:

sha256:719385e32844401d57ecfd3eacab360bf551a1491c05b85806ed8f1b08d792f6

INFO: Creating SIF file...

INFO: Build complete: tutu.sif

singularity run tutu.sif

INFO: Converting SIF file to temporary sandbox...

WARNING: passwd file doesn't exist in container, not updating

WARNING: group file doesn't exist in container, not updating

Hello from Docker!

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.

 (amd64)

 3. The Docker daemon created a new container from that image which runs the

 executable that produces the output you are currently reading.

 4. The Docker daemon streamed that output to the Docker client, which sent it

 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:

 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:

 https://hub.docker.com/

For more examples and ideas, visit:

 https://docs.docker.com/get-started/

INFO: Cleaning up image...

Skip to content

docker, and then upload that Docker image to our /home in TeideHPC and create

the container with singularity.

Running a container

As we have seen, to run a container with singularity we have the run command:

But we can also run a container by passing it a command to be executed inside

the container and arguments:

We can also work with the container interactively as we do with Docker

containers. For this we have the shell command:

As we can see, we can work with the container environment, but we are still in

our directory, very useful if we want to work with files without copying them to

the container.

Running a container in Slurm

To run singularity in slurm you run it like any other software, by loading the

corresponding module and running it:

singularity run mycontainer.sif <arg-1> <arg-2> ... <arg-N>

singularity exec mycontainer.sif <command> <arg-1> <arg-2> ... <arg-N>

singularity exec tutu.sif python3 myscript.py 42

singularity shell alpine_latest.sif

INFO: Converting SIF file to temporary sandbox...

Singularity> cat /etc/os-release

NAME="Alpine Linux"

ID=alpine

VERSION_ID=3.18.0

PRETTY_NAME="Alpine Linux v3.18"

HOME_URL="https://alpinelinux.org/"

BUG_REPORT_URL="https://gitlab.alpinelinux.org/alpine/aports/-/issues"

Singularity> pwd

/home/vjuidias

Singularity> exit

INFO: Cleaning up image...

#!/bin/bash -l

Job name

#SBATCH -J singularity_job

Skip to content

Slurm will treat singularity like any other software, i.e. it will apply the same

resource constraints, in terms of cpu, memory and time, as the rest of the

software.

MPI

Support for MPI will depend on the software we are going to run, not Singularity.

We therefore ask users to read their software documentation carefully before

running anything.

In order to use MPI with singularity we have to load the corresponding module

and use the srun command:

Partitiion to run the job

#SBATCH -p batch

Number of nodes

#SBATCH --nodes=1

Output files

#SBATCH -o out.log

#SBATCH -e err.log

##

module load Singularity/3.11.0

singularity run $HOME/hello-world_latest.sif

Tip

#!/bin/bash -l

Job name

#SBATCH -J singularity_mpi

Partitiion to run the job

#SBATCH -p batch

Number of nodes

#SBATCH --nodes=2

Output files

#SBATCH -o out.log

#SBATCH -e err.log

##

module purge

module load Singularity/3.11.0

Skip to content

GPU

Support for GPU will depend on the software we are going to run, not Singularity.

We therefore ask users to read their software documentation carefully before

running anything.

To use GPU to run the software, the --nv parameter must be used:

And for the case of Slurm it would be:

module load GCC/12.2.0 OpenMPI/4.1.4

srun singularity run $HOME/hello-world_latest.sif

Tip

singularity run --help

...

 --nv enable Nvidia support

#!/bin/bash -l

Job name

#SBATCH -J singularity_gpu

Partitiion to run the job

#SBATCH -p gpu

Number of nodes

##SBATCH --nodes=1

Number of task

#SBATCH --cpus-per-task=4

#SBATCH --gpus=a100:1

Output files

#SBATCH -o out.log

#SBATCH -e err.log

##

module purge

module load Singularity/3.11.0

singularity run --nv $HOME/hello-world_latest.sif

Skip to content
Other options

As with docker, we have the -B option with which we can *bind a directory on the

host machine to a directory in the container:

singularity run -B /usr/lib/locale/:/usr/lib/locale -B "${PWD}/input":"/input" mycontainer.sif

<command> <arg-1> <arg-2> ... <arg-N>

	Singularity
	Use Singularity at TeideHPC
	Docker containers
	Download containers from DockerHUB
	Running a container

	Running a container in Slurm
	MPI
	GPU

	Other options

