
Skip to content

Skip to contentJupyterLab: The evolution of Jupyter Notebook

JupyterLab is a next-generation web-based user interface for Project Jupyter. It’s a full

featured IDE that has everything we ever wanted to be in Jupyter notebooks which

enables you to work with documents and activities such as Jupyter notebooks, text

editors, terminals, and custom components in a flexible, integrated, and extensible

manner.

The main features of JupyterLab:

Drag and Drop:

The ability to re order cells without cut and paste is powerful. It also feels more natural

to do drag and drop given that code is organized in cells in notebooks

Multiple notebooks and kernels:

Running multiple notebooks at the same time already exist with the jupyter notebooks.

However, these notebooks had to be oppened in multiple browser windows. In

JupyterLab, you can have multiple notebooks open at the same time and in the same

browser window. Also, you can arrange your notebooks as you like which gives more

flexibility. Another nice feature is it’s possible to have each notebook running on it’s

own kernel, this is powerful when running multiple notebooks at the same time doing

different things.

Real time markdown editor

With this new feature, I can edit and see in real time the update of my markdown files

in JupyterLab. This speeds-up the edit process and streamlines work.

•

•

•

../img/jupyter_lab_interface.png
../img/jupyter_lab_interface.png

Skip to content

Multiple windows

With multiple windows open at the same time, I can have multiple notebooks that I am

working on and then use a terminal inside JupyterLab

Full file explorer

The file browser and File menu enable you to work with files and directories on your

system. This includes opening, creating, deleting, renaming, downloading, copying, and

sharing files and directories.

Manage kernels and terminals

Command search

Fast CSV files viewer

...

•

•

•

•

•

•

../img/jupiter_lab_realtime_marckdown.png
../img/jupiter_lab_realtime_marckdown.png
../img/jupyter_file_menu_left.png
../img/jupyter_file_menu_left.png

Skip to content
Running JupyterLab Remotely with Slurm

Just like Jupyter Notebook, JupyterLab can be launched locally and access local file

systems, or they can be launched on a remote machine.

By default, Labs is not secure, and potentially expose a users local files to unwanted

users. We recommend reading the section Running Jupyter Notebook with Slurm where

you can find several advices to use JupyterLab.

Remember:

The reason here

What is the solution?

Why?

What is the meaning of this?

You can use JupiterLab in two different way:

Create a Conda o pip environment

Using as module

Create a conda environment to install JupyterLab

Here we have several recommendations that we recommend that you read. To simplify:

Do Not Run Jupyter on the Login Nodes

Internet is Not Available on Compute Nodes

You can't directly access the compute nodes

This deployment is not the multi-user server you are looking for

•

•

Create a conda environment

conda activate jupyter-labenv

conda install jupyterlab matplotlib ipykernel ipywidgets ipympl --channel conda-forge -y

how_to_jupyter_notebook.en.md/#running_jupyter_notebooks_remotely_with_slurm
how_to_jupyter_notebook.en.md/#running_jupyter_notebooks_remotely_with_slurm
how_to_jupyter_notebook.en.md/#running_jupyter_notebooks_remotely_with_slurm
how_to_jupyter_notebook.en.md/#running_jupyter_notebooks_remotely_with_slurm
how_to_jupyter_notebook.en.md/#running_jupyter_notebooks_remotely_with_slurm
./how_to_jupyter_notebook.en.md/#creating_a_conda_environment

Skip to content

Using JupiterLab as module

You only need type:

How to start JupyterLab

If you prefer use JupyterLab as module you only need change in the following lines the

line

with

Running JupyterLab on a Compute Node via salloc

module spider jupyter

--

 JupyterLab: JupyterLab/3.1.6

 --

 Description:

 JupyterLab is the next-generation user interface for Project Jupyter offering all the familiar

building blocks of the classic Jupyter Notebook (notebook, terminal, text editor, file browser, rich

outputs, etc.) in a flexible and powerful user interface.

 JupyterLab will eventually replace the classic Jupyter Notebook.

 You will need to load all module(s) on any one of the lines below before the "JupyterLab/3.1.6"

module is available to load.

 GCCcore/11.2.0

...

conda activate jupyter-labenv

module load GCCcore/11.2.0 JupyterLab/3.1.6

```bash

salloc --nodes=1 --partition batch --ntasks=1 --mem=20G --time=12:00:00

# or salloc -N 1 -p batch

# or srun -p batch --pty bash

conda activate jupyter-labenv

jupyter lab --no-browser --port=8890 --ip=127.0.0.1

```


Skip to content

Running Labs as usual uses secure HTTP connections. In this guide, we present a guide to

running it more securely. More info here

Note, the default is for JupyterLab to automatically open a browser – but we can’t do that

on a remote server, so we bypass that function with the --no-browser flag.)

Create a SSH Tunnel

Here we talk about the reasons why it is necessary to create the ssh tunnel and how to

make this.

Start a second terminal session, connect to any login node and

On your local machine (e.g., laptop) setup the tunnel as follows:

Change nodeXXXX-X.hpc.iter.es by node ip.

http://127.0.0.1:8890/lab?token=4c7eddd5770e27195808f4615d8e6f3de48b45c57169b69e

We recommend secure your Jupiter Lab

Running JupyterLab on a Compute Node via sbatch

By default, JupyterLab are not secure, and potentially expose a users local files

to unwanted users.

Tip

ssh -N -L localhost:8889:localhost:8889 yourUser@nodeXXXX-Y.hpc.iter.es

ssh -N -L localhost:8890:localhost:8890 yourUser@loginX.hpc.iter.es

You can use the DNS of the node or the ip

Enter the address in your favorite browser

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=1

#SBATCH --mem=20G

#SBATCH --partition=batch

./how_to_jupyter_notebook.en.md/#how-to-create-a-ssh-tunnel
./how_to_jupyter_notebook.en.md/#creating_a_ssh_tunnel
http://127.0.0.1:8890/lab?token=4c7eddd5770e27195808f4615d8e6f3de48b45c57169b69e

Skip to content

Run script with

In order to access JupyterLab navigate to http://localhost:8890/

#SBATCH --constrains=sandy

#SBATCH --time=01:00:00

#SBATCH --job-name=jupyter-lab

#SBATCH --output=jupyter-lab-%j.out

#SBATCH --error=jupyter-lab-%j.err

##

Enable modules profile

Enable conda on bash console

eval "$(conda shell.bash hook)"

load modules or conda environments here

module load Miniconda3/4.9.2

conda activate jupyter-labenv

get tunneling info

XDG_RUNTIME_DIR=""

node=$(hostname -s)

user=$(whoami)

cluster="teide-hpc"

port=8890

print tunneling instructions jupyter-log

echo -e "

Command to create ssh tunnel from login node to compute node:

ssh -N -L localhost:${port}:localhost:${port} ${user}@nodeXXXX-Y.hpc.iter.es

Command to create ssh tunnel from your local machine to any login node:

ssh -N -L localhost:${port}:localhost:${port} ${user}@login1(2).hpc.iter.es

Use a Browser on your local machine to go to:

localhost:${port} (prefix w/ https:// if using password)

"

Run Jupyter

jupyter lab --no-browser --port=${port} --ip=127.0.0.1

sbatch jupyter-lab.sbatch

http://localhost:8890/

Skip to content
A few important notes

By default, you start a Jupyter server with token authentication enabled and this token is

logged to the terminal, so that you can copy/paste the URL into your browser. This token

can be used only once, and is used to set a cookie for your browser once it connects.

After your browser has made its first request with this one-time-token, the token is

discarded and a cookie is set in your browser.

Alternatives to token authentication you can set a password for your server. Jupyter

server password will prompt you for a password, and store the hashed password in your

jupyter_server_config.json which is usually located in ~/.jupyter typing:

You can access now with password instead of token autentication on http://localhost:

8890/lab

https://jupyter-server.readthedocs.io

If your notebook files are not in the current directory, you can pass your working

directory path as argument when starting JupyterLab.

Keep in mind Lab sessions always reside in a workspace. The default workspace is the

main /lab URL:

bash http(s)://<server:port>/<lab-location>/lab

Set a strong password in JupyterLab

jupyter server password

Enter password:

Verify password:

[JupyterPasswordApp] Wrote hashed password to /home/vdominguez/.jupyter/

jupyter_server_config.json

More security advice here

How to change the JupyterLab start-up directory

jupyter lab --notebook-dir=/home/yourUser/data/notebooks/ --preferred-dir /home/yourUser/data/

myapp

http://localhost:8890/lab
http://localhost:8890/lab
https://jupyter-server.readthedocs.io/en/latest/operators/public-server.html

Skip to content

To do this, if you are using salloc mode you can log back onto the screen session you

started earlier where the jupyter notebook is running and use ctrl-C should shutdown the

jupyter notebook and exit to close the session with the node.

If you are using batch mode you can use the command scancel .

JupyterLab Extensions Manager

JupyterLab extension is simply a plug-and-play add-on that makes more of the things

you need possible.

Technically JupyterLab extension is a JavaScript package that can add all sorts of

interactive features to the JupyterLab interface

There are a ton of JupyterLab extensions that you may want to use. Among the best

known we could highlight:

Jupyterlab-slurm

A JupyterLab extension to interface with the Slurm workload manager.

Make sure you shutdown your JupyterLab when you are done

Skip to content

Neptune-notebooks

Neptune is a tool for experiment tracking, model registry, data versioning, and live

model monitoring.

../img/jupyter_lab_slurm.png
../img/jupyter_lab_slurm.png
../img/neptune-notebooks.png
../img/neptune-notebooks.png

Skip to content

JupyterLab TensorBoard

JupyterLab TensorBoard is a frontend extension for tensorboard on jupyterlab. It helps

to collaborate between jupyter notebook and tensorboard (a visualization tool for

tensorflow) by providing a graphical user interface for tensorboard start, manage and

stop in jupyter interface.

Jupyter ML-workspace

The ML workspace is an all-in-one web-based integrated development environment

dedicated for machine learning and data science.

JupyterLab Debugger

Debugger is a JupyterLab extension that works as a visual debugger for Jupyter

notebooks, consoles, and source files. It can help you identify and fix bugs.

../img/tensorboard-extension-overview-1.webp
../img/tensorboard-extension-overview-1.webp
../img/ml-workspace-extension-1.webp
../img/ml-workspace-extension-1.webp

Skip to content

JupyterLab Git

This one is a JupyterLab extension for Git free and open-source distributed version

control system. It allows you for version controlling. You simply use it by opening the

Git extension from the Git tab on the left panel.

../img/jupyterlab-debugger.webp
../img/jupyterlab-debugger.webp
../img/jupyterlab-git-1.webp
../img/jupyterlab-git-1.webp

Skip to content

Other notable extensions:

JupyterLab LaTeX

JupyterLab variableInspector

JupyterLab plotly

JupyterLab bokeh

Jupyter Dash

JupyterLab Table of Contents

JupyterLab SQL

•

•

•

•

•

•

•

	JupyterLab: The evolution of Jupyter Notebook
	Running JupyterLab Remotely with Slurm
	Create a conda environment to install JupyterLab
	Using JupiterLab as module
	How to start JupyterLab
	Running JupyterLab on a Compute Node via salloc
	Create a SSH Tunnel
	Running JupyterLab on a Compute Node via sbatch

	A few important notes
	JupyterLab Extensions Manager
	Jupyterlab-slurm
	Neptune-notebooks
	JupyterLab TensorBoard
	Jupyter ML-workspace
	JupyterLab Debugger
	JupyterLab Git

