Quickstart: partition gpu-2#
The gpu-2 partition#
In the gpu-2 partition, each A100 is divided into two MIG instances of ~20 GB (3g.20gb). Use this partition for large GPU jobs.
Why choose gpu-2?#
- If we have already gone through the gpu-3 partition and have experience using GPUs.
- If our model needs ~20 GB of VRAM.
- If we are not running tests or concepts.
Examples#
Quick interactive example:
Batch template (copy, paste and adjust parameters):
#!/bin/bash
#SBATCH -p gpu-2
#SBATCH -n 1
#SBATCH --cpus-per-task=8
#SBATCH --mem=32G
#SBATCH --gres=gpu:1
#SBATCH --time=04:00:00
module purge
module load CUDA/12.0.0
nvidia-smi
# here run your GPU code, e.g. python train_large.py
Notes
- QOS rules may limit total CPU/memory/GPU per user; if a submission is rejected, reduce requested resources or check the QOS configuration.
- Confirm the GRES labels on the node with scontrol show nodes | egrep "gres" if in doubt.